jueves, 22 de mayo de 2008
conteniDo
1. Introducción
2. La Historia que llevó a Construir la Primera Computadora
3. El Software
4. Sistema Operativo
5. Multiprogramación
6. Mini-computadoras y Microprocesadores
7. UNIX
8. Microsoft Windows
9. El Desarrollo de los Lenguajes y Técnicas de Programación
10. Programación orientada al objeto
11. Generaciones de computadoras
12. Categorías de las Computadoras
13. Tipos de conexión
14. La Próxima Generación de Arquitecturas de Microprocesadores
15. Redes Informáticas
16. Tecnologías Futuras
17. Ordenadores Cuánticos y Moleculares
18. La Computación Vestible
19. Computación Suave o Soft Computing
20. El gran salto en la Informática y las Telecomunicaciones se dará con el uso de los Componentes de la Luz
21. El Futuro de las Telecomunicaciones
22. Correo electrónico y FTP
23. Conclusión
24. Bibliografía
2. La Historia que llevó a Construir la Primera Computadora
3. El Software
4. Sistema Operativo
5. Multiprogramación
6. Mini-computadoras y Microprocesadores
7. UNIX
8. Microsoft Windows
9. El Desarrollo de los Lenguajes y Técnicas de Programación
10. Programación orientada al objeto
11. Generaciones de computadoras
12. Categorías de las Computadoras
13. Tipos de conexión
14. La Próxima Generación de Arquitecturas de Microprocesadores
15. Redes Informáticas
16. Tecnologías Futuras
17. Ordenadores Cuánticos y Moleculares
18. La Computación Vestible
19. Computación Suave o Soft Computing
20. El gran salto en la Informática y las Telecomunicaciones se dará con el uso de los Componentes de la Luz
21. El Futuro de las Telecomunicaciones
22. Correo electrónico y FTP
23. Conclusión
24. Bibliografía
intRoduCcion
INTRODUCCIÓN
LEMAS: " Valorar la importancia de la tecnología
A medida que fue avanzando la civilización, la sociedad fue tomando una forma más organizada y avanzada, los dispositivos para contar se desarrollaron, probablemente presionados por la necesidad, y en diferentes países fueron apareciendo nuevos e ingeniosos inventos cuyo destino era calcular.
ENIAC (1946) La primera computadora electrónica fue terminada de construir en 1946, por J.P.Eckert y J.W.Mauchly en la Universidad de Pensilvania, U.S.A. y se le llamó ENIAC (Electronic Numerical Integrator And Computer), ó Integrador numérico y calculador electrónico.
LEMAS: " Valorar la importancia de la tecnología
A medida que fue avanzando la civilización, la sociedad fue tomando una forma más organizada y avanzada, los dispositivos para contar se desarrollaron, probablemente presionados por la necesidad, y en diferentes países fueron apareciendo nuevos e ingeniosos inventos cuyo destino era calcular.
ENIAC (1946) La primera computadora electrónica fue terminada de construir en 1946, por J.P.Eckert y J.W.Mauchly en la Universidad de Pensilvania, U.S.A. y se le llamó ENIAC (Electronic Numerical Integrator And Computer), ó Integrador numérico y calculador electrónico.
La Historia que Llevó a Construir la Primera Computadora=D
La Historia que Llevó a Construir la Primera Computadora
Por siglos los hombres han tratado de usar fuerzas y artefactos de diferente tipo para realizar sus trabajos, para hacerlos mas simples y rápidos. La historia conocida de los artefactos que calculan o computan, se remonta a muchos años antes de Jesucristo.
Dos principios han coexistido con la humanidad en este tema. Uno es usar cosas para contar, ya sea los dedos, piedras, semillas, etc. El otro es colocar esos objetos en posiciones determinadas. Estos principios se reunieron en el ábaco, instrumento que sirve hasta el día de hoy, para realizar complejos cálculos aritméticos con enorme rapidez y precisión.
El Ábaco Quizá fue el primer dispositivo mecánico de contabilidad que existió. Se ha calculado que tuvo su origen hace al menos 5.000 años y su efectividad ha soportado la prueba del tiempo.
Desde que el hombre comenzó a acumular riquezas y se fue asociando con otros hombres, tuvo la necesidad de inventar un sistema para poder contar, y por esa época, hace unos miles de años, es por donde tenemos que comenzar a buscar los orígenes de la computadora, allá por el continente asiático en las llanuras del valle Tigris.
Esa necesidad de contar, que no es otra cosa que un término más sencillo y antiguo que computar, llevo al hombre a la creación del primer dispositivo mecánico conocido, diseñado por el hombre para ese fin, surgió la primera computadora el ABACO o SOROBAN.
El ábaco, en la forma en que se conoce actualmente fue inventado en China unos 2.500 años AC, más o menos al mismo tiempo que apareció el soroban, una versión japonesa del ábaco.
En general el ábaco, en diferentes versiones era conocido en todas las civilizaciones de la antigüedad. En China y Japón, su construcción era de alambres paralelos que contenían las cuentas encerrados en un marco, mientras en Roma y Grecia consistía en una tabla con surcos grabados.
A medida que fue avanzando la civilización, la sociedad fue tomando una forma más organizada y avanzada, los dispositivos para contar se desarrollaron, probablemente presionados por la necesidad, y en diferentes países fueron apareciendo nuevos e ingeniosos inventos cuyo destino era calcular.
Leonardo da Vinci (1452-1519). Trazó las ideas para una sumadora mecánica, había hecho anotaciones y diagramas sobre una máquina calculadora que mantenía una relación de 10:1 en cada una de sus ruedas registradoras de 13 dígitos.
John Napier (1550-1617). En el Siglo XVII en occidente se encontraba en uso la regla de cálculo, calculadora basada en el invento de Napier, Gunther y Bissaker. John Napier descubre la relación entre series aritméticas y geométricas, creando tablas que él llama logaritmos. Edmund Gunter se encarga de marcar los logaritmos de Napier en líneas. Bissaker por su parte coloca las líneas de Napier y Gunter sobre un pedazo de madera, creando de esta manera la regla de cálculo. Durante más de 200 años, la regla de cálculo es perfeccionada, convirtiéndose en una calculadora de bolsillo, extremadamente versátil. Por el año 1700 las calculadoras numéricas digitales, representadas por el ábaco y las calculadoras análogas representadas por la regla de cálculo, eran de uso común en toda Europa.
Blas Pascal (1623-1662). El honor de ser considerado como el "padre" de la computadora le correspondió al ilustre filósofo y científico francés quien siglo y medio después de Leonardo da Vinci inventó y construyó la primera máquina calculadora automática utilizable, precursora de las modernas computadoras. Entre otras muchas cosas, Pascal desarrolló la teoría de las probabilidades, piedra angular de las matemáticas modernas. La pascalina funciona en base al mismo principio del odómetro (cuenta kilómetros) de los automóviles, que dicho sea de paso, es el mismo principio en que se basan las calculadoras mecánicas antecesoras de las electrónicas, utilizadas no hace tanto tiempo. En un juego de ruedas, en las que cada una contiene los dígitos, cada vez que una rueda completa una vuelta, la rueda siguiente avanza un décimo de vuelta.
P
pesar de que Pascal fue enaltecido por toda Europa debido a sus logros, la Pascalina, resultó un desconsolador fallo financiero, pues para esos momentos, resultaba más costosa que la labor humana para los cálculos aritméticos.
Gottfried W. von Leibnitz (1646-1717). Fué el siguiente en avanzar en el diseño de una máquina calculadora mecánica. Su artefacto se basó en el principio de la suma repetida y fue construida en 1694. Desarrolló una máquina calculadora automática con capacidad superior a la de Pascal, que permitía no solo sumar y restar, sino también multiplicar, dividir y calcular raíces cuadradas. La de Pascal solo sumaba y restaba. Leibnitz mejoro la máquina de Pascal al añadirle un cilindro escalonado cuyo objetivo era representar los dígitos del 1 al 9. Sin embargo, aunque el merito no le correspondía a él (pues se considera oficialmente que se inventaron más tarde), se sabe que antes de decidirse por el cilindro escalonado Leibnitz consideró la utilización de engranajes con dientes retráctiles y otros mecanismos técnicamente muy avanzados para esa época. Se le acredita el haber comenzado el estudio formal de la lógica, la cual es la base de la programación y de la operación de las computadoras.
Joseph-Marie Jackard (1753-1834). El primer evento notable sucedió en el 1801 cuando el francés, Joseph Jackard, desarrolló el telar automático. Jackard tuvo la idea de usar tarjetas perforadas para manejar agujas de tejer, en telares mecánicos. Un conjunto de tarjetas constituían un programa, el cual creaba diseños textiles.
Aunque su propósito no era realizar cálculos, contribuyó grandemente al desarrollo de las computadoras. Por primera vez se controla una máquina con instrucciones codificadas, en tarjetas perforadas, que era fácil de usar y requería poca intervención humana; y por primera vez se utiliza un sistema de tarjetas perforadas para crear el diseño deseado en la tela mientras esta se iba tejiendo. El telar de Jackard opera de la manera siguiente: las tarjetas se perforan estratégicamente y se acomodan en cierta secuencia para indicar un diseño de tejido en particular. Esta máquina fue considerada el primer paso significativo para la automatización binaria.
Charles Babbage (1793-1871). Profesor de matemáticas de la Universidad de Cambridge, Inglaterra, desarrolla en 1823 el concepto de un artefacto, que él denomina "máquina diferencial". La máquina estaba concebida para realizar cálculos, almacenar y seleccionar información, resolver problemas y entregar resultados impresos. Babbage imaginó su máquina compuesta de varias otras, todas trabajando armónicamente en conjunto: los receptores recogiendo información; un equipo transfiriéndola; un elemento almacenador de datos y operaciones; y finalmente una impresora entregando resultados. Pese a su increíble concepción, la máquina de Babbage, que se parecía mucho a una computadora, no llegó jamás a construirse. Los planes de Babbage fueron demasiado ambiciosos para su época. Este avanzado concepto, con respecto a la simple calculadora, le valió a Babbage ser considerado como el precursor de la computadora.
La novia de Babbage, Ada Augusta Byron, luego Condesa de Lovelace, hija del poeta inglés Lord Byron, que le ayuda en el desarrollo del concepto de la Máquina Diferencial, creando programas para la máquina analítica, es reconocida y respetada, como el primer programador de computadoras. La máquina tendría dos secciones fundamentales: una parte donde se realizarían todas las operaciones y otra donde se almacenaría toda la información necesaria para realizar los cálculos, así como los resultados parciales y finales. El almacén de datos consistiría de mil registradoras con un número de 50 dígitos cada una; estos números podrían utilizarse en los cálculos, los resultados se podrían guardar en el almacén y los números utilizados podrían transferirse a otras ubicaciones.
La máquina controlaría todo el proceso mediante la utilización de tarjetas perforadas similares a las inventadas por Jackard para la creación de diseños de sus telares, y que hasta hace muy poco se utilizaban regularmente.
Babbage no pudo lograr su sueño de ver construida la máquina, que había tomado 15 años de su vida entre los dos modelos, pero vio un equipo similar desarrollado por un impresor sueco llamado George Scheutz,
basado en su máquina diferencial.
documentación Babbage colaboró con Scheutz en la fabricación de su máquina e inclusive influyó todo lo que pudo, para que esta ganara la Medalla de Oro Francesa en 1855.
George Boole Trabajo sobre las bases sentadas por Leibnitz, quien preconizó que todas las verdades de la razón se conducían a un tipo de cálculo, para desarrollar en 1854, a la edad de 39
años, su teoría que redujo la lógica a un tipo de álgebra extremadamente simple. Esta teoría de la lógica construyó la base del desarrollo de los circuitos de conmutación tan importantes en telefonía y en el diseño de las computadoras electrónicas.
En su carrera como matemático, Boole tiene a su crédito también haber descubierto algo que se considera que fue indispensable para el desarrollo de la teoría de la relatividad de Einstein: las magnitudes constantes. Los descubrimientos matemáticos de George Boole, que llevaron al desarrollo del sistema numérico binario (0 y 1) constituyeron un hito incuestionable a lo largo del camino hacia las modernas computadoras electrónicas. Pero además de la lógica, el álgebra de Boole tiene otras aplicaciones igualmente importantes, entre ellas la de ser el álgebra adecuada para trabajar con la teoría combinatoria de la operación de unión e intersección. También, siempre en este campo, al considerar la idea del número de elementos de un conjunto, el álgebra de Boole constituye la base de la Teoría de las Probabilidades.
Claude Elwood Shanon A él se debe el haber podido aplicar a la electrónica - y por extensión a las computadoras - los conceptos de la teoría de Boole. Shanon hizo sus planteamientos en 1937 en su tesis de grado para la Maestría en Ingeniería Eléctrica en el MIT, uno de los planteles de enseñanza científica y tecnológica más prestigiosos del mundo.
En su tesis, Shanon sostenía que los valores de verdadero y falso planteados en el álgebra lógica de Boole, se correspondían con los estados 'abierto' y 'cerrado' de los circuitos eléctricos. Además, Shanon definió la unidad de información, et bit, lo que consecuentemente constituyó la base para la utilización del sistema binario de las computadoras en lugar del sistema decimal.
William Burroughs Nació el 28 de enero de 1857. La monotonía del trabajo y la gran precisión que se necesitaba en los resultados de los cálculos fue lo que decidió a William Burroughs a intentar construir una máquina calculadora precisa y rápida. Sus primeros pasos en este sentido los dio en 1882, pero no fue hasta casi veinte años después que su esfuerzo se vio coronado por el éxito.
Las primeras máquinas compradas por los comerciantes tuvieron que recogerse rápidamente, puesto que todas, presentaban defectos en el funcionamiento. Este nuevo fracaso fue el paso final antes de perfeccionar definitivamente su modelo al cual llamó Maquina de sumar y hacer listas.
A pesar de otro sin número de dificultades en promoción y mercado de su nueva máquina, poco a poco este modelo se fue imponiendo, de modo que luego de dos años ya se vendían a razón de unas 700 unidades por año. William Burroughs, fue el primer genio norteamericano que contribuyó grandemente al desarrollo de la computadora
Herman Hollerith Las tarjetas perforadas. Uno de los hitos más importantes en el proceso paulatino del desarrollo de una máquina que pudiera realizar complejos cálculos en forma rápida, que luego llevaría a lo que es hoy la moderna computadora, lo constituyó la introducción de tarjetas perforadas como elemento de tabulación. Este histórico avance se debe a la inventiva de un ingeniero norteamericano de ascendencia alemán: Herman Hollerith. La idea de utilizar tarjetas perforadas realmente no fue de Hollerith, sino de John Shaw Billings, su superior en el Buró del Censo, pero fue Hollerith quien logró poner en práctica la idea que revolucionaría para siempre el cálculo mecanizado. El diseñó un sistema mediante el cual las tarjetas eran perforadas para representar la información del censo. Las tarjetas eran insertadas en la máquina tabuladora y ésta calculaba la información recibida. Hollerith no tomó la idea de las tarjetas perforadas del invento de Jackard, sino de la "fotografía de perforación" Algunas líneas ferroviarias de la época expedían boletos con descripciones físicas del pasajero; los conductores hacían orificios en los boletos que describían el color de cabello, de ojos y la forma de nariz del pasajero. Eso le dio a Hollerith la idea para hacer la fotografía perforada de cada persona que se iba a tabular. Hollertih fundó la Tabulating Machine Company y vendió sus productos en todo el mundo. La demanda de sus máquinas se extendió incluso hasta Rusia. El primer censo llevado a cabo en Rusia en 1897, se registró con el Tabulador de Hollerith. En1911, la Tabulating Machine Company, al unirse con otras Compañías, formó la Computing-Tabulating-Recording-Company.
Konrad Zuse Nació en Berlín, Alemania, en 1910. EN 1938, Zuse ya había desarrollado una notación binaria que aplicó a los circuitos de rieles electromagnéticos que utilizaría más tarde en su serie de computadoras. El primer modelo construido por Konrad Zuse en 1939, fabricado por completo en la sala de su casa sin ayuda por parte de ninguna agencia gubernamental o privada, era un equipo completamente mecánico. Este modelo fue bautizado con el nombre de V-1 (V por Versuchmodel o Modelo Experimental). La intención principal de Zuse al tratar de desarrollar estos equipos era proporcionar una herramienta a los científicos y técnicos para resolver la gran cantidad de problemas matemáticos involucrados en todas las ramas científicas y técnicas.
En 1939 Konrad Zuse fue reclutado por el ejército alemán, pero pronto fue licenciado (al igual que la mayoría de los ingenieros en aquella época) y asignado a trabajar en el cuerpo de ingeniería que desarrollaba los proyectos del ejército, en el Instituto Alemán de Investigación Aérea.
Al mismo tiempo que prestaba sus servicios en el citado instituto, Zuse continúo sus trabajos en la sala de su casa y desarrolló una versión más avanzada de su V-1 a la cual denominó V-2. Este modelo lo construyó Zuse con la ayuda de un amigo y estudiante del mismo Instituto Técnico donde Zuse había estudiado, Helmut Schreyer había hecho su carrera en la rama de las telecomunicaciones y fue él quién consiguió los rieles electromagnéticos con que funcionaba este nuevo modelo, y quien sugirió a Zuse su utilización.
Alfred Teichmann, uno de los principales científicos que prestaba servicios en el Instituto Alemán de Investigaciones Aéreas, tuvo conocimiento de los trabajos de Zuse con respecto a las computadoras en una visita que hizo a la casa de éste. Allí vio por primera vez el modelo V-2 y quedó inmediatamente convencido de que máquinas como esa eran las que se necesitaban para resolver algunos de los problemas más graves que se estaban presentado en el diseño de los aviones.
Con la ayuda de Teichmann, Zuse logró conseguir fondos que le permitieron continuar con sus investigaciones un poco más holgadamente, aunque siempre en la sala de su casa, y así surgió, con la colaboración activa de Schreyer, la V-3, la primera computadora digital controlada por programas y completamente operacional. Este modelo constaba con 1.400 rieles electromagnéticos en la memoria, 600 para el control de las operaciones aritméticas y 600 para otros propósitos.
Durante la Segunda Guerra Mundial Wernher von Braun, eminente científico alemán, desarrolló un tipo de bombas cohete denominadas V-1 y V-2, muy celebres sobre todo por el papel que jugaron en los ataques alemanes contra el puerto de Amberes (Bélgica) y Londres (Inglaterra). Para evitar confusión con estas bombas, Zuse determinó cambiar la denominación de sus computadoras que, en adelante, pasaron a conocerse como Z-1, Z-2, Z-3, etc.
El modelo Z-3 desarrollado a finales de 1941 como una computadora de propósito general, fue parcialmente modificada por Zuse con el objetivo de apoyar el esfuerzo bélico alemán. La nueva versión se denominó Z-4 y se utilizó como elemento de teledirección de una bomba volante desarrollada por la compañía Henschel Aircraft Co., para la Luftwaffe. (Zuse niega que la Z-4 haya sido diseñada para este propósito).
La bomba volante alemana era una especie de avión no tripulado que era transportado por un bombardero. Cuando el piloto del bombardero determinaba el blanco, lanzaba la bomba que era dirigida mediante la Z-4 por la tripulación del bombardero. En sus aplicaciones de diseño, la Z-4 estaba destinada a medir las inexactitudes en las dimensiones de las piezas de los aviones y a calcular la desviación que éstas ocasionarían en la trayectoria de los aviones que se construyeran con ellas.
En 1944, mientras Zuse trabajaba en la terminación de la Z-4, se enteró de la presentación en Estados Unidos de la Mark I de Aiken, la primera computadora digital programable norteamericana.
Al finalizar la guerra, con la caída del régimen nazi, Zuse abandono Berlín llevando consigo todos los elementos de su computadora Z-4 (todos los modelos previos fueron destruidos en los bombardeos a Berlín). Ayudado por un amigo de Wernher von Braun, a quien había conocido en su huida de Berlín, Walter Robert Dornberger, Zuse y von Braun abandonaron Alemania, y Zuse se radicó en la pequeña población Alpina de Suiza, Hinterstein. Allí continúo trabajando en su proyecto, desarrollado su computadora.
En 1947, la Z-4 tenía una capacidad de 16 palabras en la memoria, en 1949 la capacidad había aumentado hasta 64 palabras y en la década de los 50, la memoria de la Z-4 podía contener 1024 palabras de 32 bits. Además podía multiplicar en un segundo y extraer raiz cuadrada en 5 segundos.
Además de sus trabajos en la computadora, Konrad Zuse desarrolló un idioma prototipo al cual llamó Plankalkul, en el cual anticipó y resolvió varios de los problemas que se abarcan hoy en el contexto de la teoría de los algoritmos, programación estructurada y estructura de la programación de idiomas para computadoras.
Poco después de terminada la guerra, ya establecido en suelo suizo, Konrad Zuse estableció su propia compañía a la que denomino Zuse KG. Después de varios años construyendo su serie Z y de no haber logrado interesar lo suficiente a IBM para respaldar su producción, Remington Rand decidió ayudar a comercializar en Suiza algunos de los modelos fabricados por Zuse. Finalmente, la firma Siemens AG adquirió los derechos sobre la compañía de Zuse y éste quedó como consultor semi-retirado de la misma. Hoy se reconoce a Konrad Zuse como el creador de la primera computadora digital programable completamente operacional.
Atanasoff Y Berry Una antigua patente de un dispositivo que mucha gente creyó que era la primera computadora digital electrónica, se invalidó en 1973 por orden de un tribunal federal, y oficialmente se le dio el crédito a John V. Atanasoff como el inventor de la computadora digital electrónica. El Dr. Atanasoff, catedrático de la Universidad Estatal de Iowa, desarrolló la primera computadora digital electrónica entre los años de 1937 a 1942. Llamó a su invento la computadora Atanasoff-Berry, ó solo ABC (Atanasoff Berry Computer). Un estudiante graduado, Clifford Berry, fue una útil ayuda en la construcción de la computadora ABC.
En el edificio de Física de la Universidad de Iowa aparece una placa con la siguiente leyenda: "La primera computadora digital electrónica de operación automática del mundo, fue construida en este edificio en 1939 por John Vincent Atanasoff, matemático y físico de la Facultad de la Universidad, quien concibió la idea, y por Clifford Edward Berry, estudiante graduado de física."
MARK I (1944) Marca la fecha del la primera computadora, que se pone en funcionamiento. Es el Dr. Howard Aiken en la Universidad de Harvard, Estados Unidos, quien la presenta con el nombre de Mark I. Es esta la primera máquina procesadora de información. La Mark I funcionaba eléctricamente, las instrucciones e información se introducen en ella por medio de tarjetas perforadas. Los componentes trabajan basados en principios electromecánicos. Este impresionante equipo medía 16 mts. de largo y 2,5 mts. de alto, contenía un aproximado de 800.000 piezas y más de 800 Km. de cablerío eléctrico, pero los resultados obtenidos eran igualmente impresionantes para la época. Mark I tenía la capacidad de manejar números de hasta 23 dígitos, realizando sumas en menos de medio segundo, multiplicaciones en tres segundos y operaciones logarítmicas en poco más de un minuto. Ahora sí se había hecho por fin realidad el sueño de Pascal, Leibnitz, Babbage, Hollerith y muchos otros: la computadora era una realidad.
A pesar de su peso superior a 5 toneladas y su lentitud comparada con los equipos actuales, fue la primera máquina en poseer todas las características de una verdadera computadora.
ENIAC (1946) La primera computadora electrónica fue terminada de construir en 1946, por J.P.Eckert y J.W.Mauchly en la Universidad de Pensilvania, U.S.A. y se le llamó ENIAC (Electronic Numerical Integrator And Computer), ó Integrador numérico y calculador electrónico. La ENIAC construida para aplicaciones de la Segunda Guerra mundial, se terminó en 30 meses por un equipo de científicos que trabajaban bajo reloj. La ENIAC, mil veces más veloz que sus predecesoras electromecánicas, irrumpió como un importante descubrimiento en la tecnología de la computación. Pesaba 30 toneladas y ocupaba un espacio de 450 mts cuadrados, llenaba un cuarto de 6 mts x 12 mts y contenía 18.000 bulbos, tenía que programarse manualmente conectándola a 3 tableros que contenían más de 6000 interruptores. Ingresar un nuevo programa era un proceso muy tedioso que requería días o incluso semanas. A diferencia de las computadoras actuales que operan con un sistema binario (0,1) la ENIAC operaba con uno decimal (0, 1,2...9) La ENIAC requería una gran cantidad de electricidad. La ENIAC poseía una capacidad, rapidez y flexibilidad muy superiores a la Mark I. Comenzaba entonces la tenaz competencia en la naciente industria, IBM desarrolló en 1948 su computadora SSEC (Calculadora Electrónica de Secuencia Selectiva) superior a la ENIAC.
Para 1951, la compañía Remington Rand, otra de las líderes en este campo, presento al mercado su modelo denominado Univac, que ganó el contrato para el censo de 1951 por su gran capacidad, netamente superior a todas las demás desarrolladas hasta el momento.
Pero para la recia personalidad de Thomas J. Watson, se le hacia difícil aceptar que su compañía no fuera la principal en este campo, así que en respuesta al desarrollo de la Univac, hizo que IBM construyera su modelo 701, una computadora científica con una capacidad superior 25 veces a la SSEC y muy superior también a la Univac.
A la 701 siguieron otros modelos cada vez más perfeccionados en cuanto a rapidez, precisión y capacidad, los cuales colocaron a IBM como el líder indiscutible de la naciente industria de las computadoras. Aunque en la actualidad es difícil mencionar a una firma determinada como la primera en este campo, es un hecho irrefutable que IBM continua siendo una de las principales compañías en cuanto a desarrollo de computadoras se refiere.
• Con ella se inicia una nueva era, en la cual la computadora pasa a ser el centro del desarrollo tecnológico, y de una profunda modificación en el comportamiento de las sociedades.
EDVAC (1947) (Eletronic Discrete-Variable Automatic Computer, es decir computadora automática electrónica de variable discreta) Desarrollada por Dr. John W. Mauchly, John Presper Eckert Jr. y John Von Neumann. Primera computadora en utilizar el concepto de almacenar información. Podía almacenar datos e instrucciones usando un código especial llamado notación binaria. Los programas almacenados dieron a las computadoras una flexibilidad y confiabilidad tremendas, haciéndolas más rápidas y menos sujetas a errores que los programas mecánicos. Una computadora con capacidad de programa almacenado podría ser utilizada para varias aplicaciones cargando y ejecutando el programa apropiado. Hasta este punto, los programas y datos podían ser ingresados en la computadora sólo con la notación binaria, que es el único código que las computadoras "entienden". El siguiente desarrollo importante en el diseño de las computadoras fueron los programas intérpretes, que permitían a las personas comunicarse con las computadoras utilizando medios distintos a los números binarios. En 1952 Grace Murray Hoper una oficial de la Marina de EE.UU., desarrolló el primer compilador, un programa que puede traducir enunciados parecidos al inglés en un código binario comprensible para la maquina llamado COBOL (COmmon Business-Oriented Languaje).
EDSAC (1949) Desarrollada por Maurice Wilkes. Primera computadora capaz de almacenar programas electrónicamente.
LA ACE PILOT (1950) Turing tuvo listos en 1946 todos los planos de lo que posteriormente seria conocido como ACE Pilot (Automatic Calculating Engine) que fue presentado públicamente en 1950. La ACE Pilot estuvo considerada por mucho tiempo como la computadora más avanzada del mundo, pudiendo realizar
operaciones tales como suma y multiplicación en cuestión de microsegundos.
UNIVAC I (1951) Desarrollada por Mauchly y Eckert para la Remington-Rand Corporation. Primera computadora comercial utilizada en las oficinas del censo de los Estados Unidos. Esta máquina se encuentra actualmente en el "Smithsonian Institute". En 1952 fue utilizada para predecir la victoria de Dwight D. Eisenhower en las elecciones presidenciales de los Estados Unidos.
Por siglos los hombres han tratado de usar fuerzas y artefactos de diferente tipo para realizar sus trabajos, para hacerlos mas simples y rápidos. La historia conocida de los artefactos que calculan o computan, se remonta a muchos años antes de Jesucristo.
Dos principios han coexistido con la humanidad en este tema. Uno es usar cosas para contar, ya sea los dedos, piedras, semillas, etc. El otro es colocar esos objetos en posiciones determinadas. Estos principios se reunieron en el ábaco, instrumento que sirve hasta el día de hoy, para realizar complejos cálculos aritméticos con enorme rapidez y precisión.
El Ábaco Quizá fue el primer dispositivo mecánico de contabilidad que existió. Se ha calculado que tuvo su origen hace al menos 5.000 años y su efectividad ha soportado la prueba del tiempo.
Desde que el hombre comenzó a acumular riquezas y se fue asociando con otros hombres, tuvo la necesidad de inventar un sistema para poder contar, y por esa época, hace unos miles de años, es por donde tenemos que comenzar a buscar los orígenes de la computadora, allá por el continente asiático en las llanuras del valle Tigris.
Esa necesidad de contar, que no es otra cosa que un término más sencillo y antiguo que computar, llevo al hombre a la creación del primer dispositivo mecánico conocido, diseñado por el hombre para ese fin, surgió la primera computadora el ABACO o SOROBAN.
El ábaco, en la forma en que se conoce actualmente fue inventado en China unos 2.500 años AC, más o menos al mismo tiempo que apareció el soroban, una versión japonesa del ábaco.
En general el ábaco, en diferentes versiones era conocido en todas las civilizaciones de la antigüedad. En China y Japón, su construcción era de alambres paralelos que contenían las cuentas encerrados en un marco, mientras en Roma y Grecia consistía en una tabla con surcos grabados.
A medida que fue avanzando la civilización, la sociedad fue tomando una forma más organizada y avanzada, los dispositivos para contar se desarrollaron, probablemente presionados por la necesidad, y en diferentes países fueron apareciendo nuevos e ingeniosos inventos cuyo destino era calcular.
Leonardo da Vinci (1452-1519). Trazó las ideas para una sumadora mecánica, había hecho anotaciones y diagramas sobre una máquina calculadora que mantenía una relación de 10:1 en cada una de sus ruedas registradoras de 13 dígitos.
John Napier (1550-1617). En el Siglo XVII en occidente se encontraba en uso la regla de cálculo, calculadora basada en el invento de Napier, Gunther y Bissaker. John Napier descubre la relación entre series aritméticas y geométricas, creando tablas que él llama logaritmos. Edmund Gunter se encarga de marcar los logaritmos de Napier en líneas. Bissaker por su parte coloca las líneas de Napier y Gunter sobre un pedazo de madera, creando de esta manera la regla de cálculo. Durante más de 200 años, la regla de cálculo es perfeccionada, convirtiéndose en una calculadora de bolsillo, extremadamente versátil. Por el año 1700 las calculadoras numéricas digitales, representadas por el ábaco y las calculadoras análogas representadas por la regla de cálculo, eran de uso común en toda Europa.
Blas Pascal (1623-1662). El honor de ser considerado como el "padre" de la computadora le correspondió al ilustre filósofo y científico francés quien siglo y medio después de Leonardo da Vinci inventó y construyó la primera máquina calculadora automática utilizable, precursora de las modernas computadoras. Entre otras muchas cosas, Pascal desarrolló la teoría de las probabilidades, piedra angular de las matemáticas modernas. La pascalina funciona en base al mismo principio del odómetro (cuenta kilómetros) de los automóviles, que dicho sea de paso, es el mismo principio en que se basan las calculadoras mecánicas antecesoras de las electrónicas, utilizadas no hace tanto tiempo. En un juego de ruedas, en las que cada una contiene los dígitos, cada vez que una rueda completa una vuelta, la rueda siguiente avanza un décimo de vuelta.
P
pesar de que Pascal fue enaltecido por toda Europa debido a sus logros, la Pascalina, resultó un desconsolador fallo financiero, pues para esos momentos, resultaba más costosa que la labor humana para los cálculos aritméticos.
Gottfried W. von Leibnitz (1646-1717). Fué el siguiente en avanzar en el diseño de una máquina calculadora mecánica. Su artefacto se basó en el principio de la suma repetida y fue construida en 1694. Desarrolló una máquina calculadora automática con capacidad superior a la de Pascal, que permitía no solo sumar y restar, sino también multiplicar, dividir y calcular raíces cuadradas. La de Pascal solo sumaba y restaba. Leibnitz mejoro la máquina de Pascal al añadirle un cilindro escalonado cuyo objetivo era representar los dígitos del 1 al 9. Sin embargo, aunque el merito no le correspondía a él (pues se considera oficialmente que se inventaron más tarde), se sabe que antes de decidirse por el cilindro escalonado Leibnitz consideró la utilización de engranajes con dientes retráctiles y otros mecanismos técnicamente muy avanzados para esa época. Se le acredita el haber comenzado el estudio formal de la lógica, la cual es la base de la programación y de la operación de las computadoras.
Joseph-Marie Jackard (1753-1834). El primer evento notable sucedió en el 1801 cuando el francés, Joseph Jackard, desarrolló el telar automático. Jackard tuvo la idea de usar tarjetas perforadas para manejar agujas de tejer, en telares mecánicos. Un conjunto de tarjetas constituían un programa, el cual creaba diseños textiles.
Aunque su propósito no era realizar cálculos, contribuyó grandemente al desarrollo de las computadoras. Por primera vez se controla una máquina con instrucciones codificadas, en tarjetas perforadas, que era fácil de usar y requería poca intervención humana; y por primera vez se utiliza un sistema de tarjetas perforadas para crear el diseño deseado en la tela mientras esta se iba tejiendo. El telar de Jackard opera de la manera siguiente: las tarjetas se perforan estratégicamente y se acomodan en cierta secuencia para indicar un diseño de tejido en particular. Esta máquina fue considerada el primer paso significativo para la automatización binaria.
Charles Babbage (1793-1871). Profesor de matemáticas de la Universidad de Cambridge, Inglaterra, desarrolla en 1823 el concepto de un artefacto, que él denomina "máquina diferencial". La máquina estaba concebida para realizar cálculos, almacenar y seleccionar información, resolver problemas y entregar resultados impresos. Babbage imaginó su máquina compuesta de varias otras, todas trabajando armónicamente en conjunto: los receptores recogiendo información; un equipo transfiriéndola; un elemento almacenador de datos y operaciones; y finalmente una impresora entregando resultados. Pese a su increíble concepción, la máquina de Babbage, que se parecía mucho a una computadora, no llegó jamás a construirse. Los planes de Babbage fueron demasiado ambiciosos para su época. Este avanzado concepto, con respecto a la simple calculadora, le valió a Babbage ser considerado como el precursor de la computadora.
La novia de Babbage, Ada Augusta Byron, luego Condesa de Lovelace, hija del poeta inglés Lord Byron, que le ayuda en el desarrollo del concepto de la Máquina Diferencial, creando programas para la máquina analítica, es reconocida y respetada, como el primer programador de computadoras. La máquina tendría dos secciones fundamentales: una parte donde se realizarían todas las operaciones y otra donde se almacenaría toda la información necesaria para realizar los cálculos, así como los resultados parciales y finales. El almacén de datos consistiría de mil registradoras con un número de 50 dígitos cada una; estos números podrían utilizarse en los cálculos, los resultados se podrían guardar en el almacén y los números utilizados podrían transferirse a otras ubicaciones.
La máquina controlaría todo el proceso mediante la utilización de tarjetas perforadas similares a las inventadas por Jackard para la creación de diseños de sus telares, y que hasta hace muy poco se utilizaban regularmente.
Babbage no pudo lograr su sueño de ver construida la máquina, que había tomado 15 años de su vida entre los dos modelos, pero vio un equipo similar desarrollado por un impresor sueco llamado George Scheutz,
basado en su máquina diferencial.
documentación Babbage colaboró con Scheutz en la fabricación de su máquina e inclusive influyó todo lo que pudo, para que esta ganara la Medalla de Oro Francesa en 1855.
George Boole Trabajo sobre las bases sentadas por Leibnitz, quien preconizó que todas las verdades de la razón se conducían a un tipo de cálculo, para desarrollar en 1854, a la edad de 39
años, su teoría que redujo la lógica a un tipo de álgebra extremadamente simple. Esta teoría de la lógica construyó la base del desarrollo de los circuitos de conmutación tan importantes en telefonía y en el diseño de las computadoras electrónicas.
En su carrera como matemático, Boole tiene a su crédito también haber descubierto algo que se considera que fue indispensable para el desarrollo de la teoría de la relatividad de Einstein: las magnitudes constantes. Los descubrimientos matemáticos de George Boole, que llevaron al desarrollo del sistema numérico binario (0 y 1) constituyeron un hito incuestionable a lo largo del camino hacia las modernas computadoras electrónicas. Pero además de la lógica, el álgebra de Boole tiene otras aplicaciones igualmente importantes, entre ellas la de ser el álgebra adecuada para trabajar con la teoría combinatoria de la operación de unión e intersección. También, siempre en este campo, al considerar la idea del número de elementos de un conjunto, el álgebra de Boole constituye la base de la Teoría de las Probabilidades.
Claude Elwood Shanon A él se debe el haber podido aplicar a la electrónica - y por extensión a las computadoras - los conceptos de la teoría de Boole. Shanon hizo sus planteamientos en 1937 en su tesis de grado para la Maestría en Ingeniería Eléctrica en el MIT, uno de los planteles de enseñanza científica y tecnológica más prestigiosos del mundo.
En su tesis, Shanon sostenía que los valores de verdadero y falso planteados en el álgebra lógica de Boole, se correspondían con los estados 'abierto' y 'cerrado' de los circuitos eléctricos. Además, Shanon definió la unidad de información, et bit, lo que consecuentemente constituyó la base para la utilización del sistema binario de las computadoras en lugar del sistema decimal.
William Burroughs Nació el 28 de enero de 1857. La monotonía del trabajo y la gran precisión que se necesitaba en los resultados de los cálculos fue lo que decidió a William Burroughs a intentar construir una máquina calculadora precisa y rápida. Sus primeros pasos en este sentido los dio en 1882, pero no fue hasta casi veinte años después que su esfuerzo se vio coronado por el éxito.
Las primeras máquinas compradas por los comerciantes tuvieron que recogerse rápidamente, puesto que todas, presentaban defectos en el funcionamiento. Este nuevo fracaso fue el paso final antes de perfeccionar definitivamente su modelo al cual llamó Maquina de sumar y hacer listas.
A pesar de otro sin número de dificultades en promoción y mercado de su nueva máquina, poco a poco este modelo se fue imponiendo, de modo que luego de dos años ya se vendían a razón de unas 700 unidades por año. William Burroughs, fue el primer genio norteamericano que contribuyó grandemente al desarrollo de la computadora
Herman Hollerith Las tarjetas perforadas. Uno de los hitos más importantes en el proceso paulatino del desarrollo de una máquina que pudiera realizar complejos cálculos en forma rápida, que luego llevaría a lo que es hoy la moderna computadora, lo constituyó la introducción de tarjetas perforadas como elemento de tabulación. Este histórico avance se debe a la inventiva de un ingeniero norteamericano de ascendencia alemán: Herman Hollerith. La idea de utilizar tarjetas perforadas realmente no fue de Hollerith, sino de John Shaw Billings, su superior en el Buró del Censo, pero fue Hollerith quien logró poner en práctica la idea que revolucionaría para siempre el cálculo mecanizado. El diseñó un sistema mediante el cual las tarjetas eran perforadas para representar la información del censo. Las tarjetas eran insertadas en la máquina tabuladora y ésta calculaba la información recibida. Hollerith no tomó la idea de las tarjetas perforadas del invento de Jackard, sino de la "fotografía de perforación" Algunas líneas ferroviarias de la época expedían boletos con descripciones físicas del pasajero; los conductores hacían orificios en los boletos que describían el color de cabello, de ojos y la forma de nariz del pasajero. Eso le dio a Hollerith la idea para hacer la fotografía perforada de cada persona que se iba a tabular. Hollertih fundó la Tabulating Machine Company y vendió sus productos en todo el mundo. La demanda de sus máquinas se extendió incluso hasta Rusia. El primer censo llevado a cabo en Rusia en 1897, se registró con el Tabulador de Hollerith. En1911, la Tabulating Machine Company, al unirse con otras Compañías, formó la Computing-Tabulating-Recording-Company.
Konrad Zuse Nació en Berlín, Alemania, en 1910. EN 1938, Zuse ya había desarrollado una notación binaria que aplicó a los circuitos de rieles electromagnéticos que utilizaría más tarde en su serie de computadoras. El primer modelo construido por Konrad Zuse en 1939, fabricado por completo en la sala de su casa sin ayuda por parte de ninguna agencia gubernamental o privada, era un equipo completamente mecánico. Este modelo fue bautizado con el nombre de V-1 (V por Versuchmodel o Modelo Experimental). La intención principal de Zuse al tratar de desarrollar estos equipos era proporcionar una herramienta a los científicos y técnicos para resolver la gran cantidad de problemas matemáticos involucrados en todas las ramas científicas y técnicas.
En 1939 Konrad Zuse fue reclutado por el ejército alemán, pero pronto fue licenciado (al igual que la mayoría de los ingenieros en aquella época) y asignado a trabajar en el cuerpo de ingeniería que desarrollaba los proyectos del ejército, en el Instituto Alemán de Investigación Aérea.
Al mismo tiempo que prestaba sus servicios en el citado instituto, Zuse continúo sus trabajos en la sala de su casa y desarrolló una versión más avanzada de su V-1 a la cual denominó V-2. Este modelo lo construyó Zuse con la ayuda de un amigo y estudiante del mismo Instituto Técnico donde Zuse había estudiado, Helmut Schreyer había hecho su carrera en la rama de las telecomunicaciones y fue él quién consiguió los rieles electromagnéticos con que funcionaba este nuevo modelo, y quien sugirió a Zuse su utilización.
Alfred Teichmann, uno de los principales científicos que prestaba servicios en el Instituto Alemán de Investigaciones Aéreas, tuvo conocimiento de los trabajos de Zuse con respecto a las computadoras en una visita que hizo a la casa de éste. Allí vio por primera vez el modelo V-2 y quedó inmediatamente convencido de que máquinas como esa eran las que se necesitaban para resolver algunos de los problemas más graves que se estaban presentado en el diseño de los aviones.
Con la ayuda de Teichmann, Zuse logró conseguir fondos que le permitieron continuar con sus investigaciones un poco más holgadamente, aunque siempre en la sala de su casa, y así surgió, con la colaboración activa de Schreyer, la V-3, la primera computadora digital controlada por programas y completamente operacional. Este modelo constaba con 1.400 rieles electromagnéticos en la memoria, 600 para el control de las operaciones aritméticas y 600 para otros propósitos.
Durante la Segunda Guerra Mundial Wernher von Braun, eminente científico alemán, desarrolló un tipo de bombas cohete denominadas V-1 y V-2, muy celebres sobre todo por el papel que jugaron en los ataques alemanes contra el puerto de Amberes (Bélgica) y Londres (Inglaterra). Para evitar confusión con estas bombas, Zuse determinó cambiar la denominación de sus computadoras que, en adelante, pasaron a conocerse como Z-1, Z-2, Z-3, etc.
El modelo Z-3 desarrollado a finales de 1941 como una computadora de propósito general, fue parcialmente modificada por Zuse con el objetivo de apoyar el esfuerzo bélico alemán. La nueva versión se denominó Z-4 y se utilizó como elemento de teledirección de una bomba volante desarrollada por la compañía Henschel Aircraft Co., para la Luftwaffe. (Zuse niega que la Z-4 haya sido diseñada para este propósito).
La bomba volante alemana era una especie de avión no tripulado que era transportado por un bombardero. Cuando el piloto del bombardero determinaba el blanco, lanzaba la bomba que era dirigida mediante la Z-4 por la tripulación del bombardero. En sus aplicaciones de diseño, la Z-4 estaba destinada a medir las inexactitudes en las dimensiones de las piezas de los aviones y a calcular la desviación que éstas ocasionarían en la trayectoria de los aviones que se construyeran con ellas.
En 1944, mientras Zuse trabajaba en la terminación de la Z-4, se enteró de la presentación en Estados Unidos de la Mark I de Aiken, la primera computadora digital programable norteamericana.
Al finalizar la guerra, con la caída del régimen nazi, Zuse abandono Berlín llevando consigo todos los elementos de su computadora Z-4 (todos los modelos previos fueron destruidos en los bombardeos a Berlín). Ayudado por un amigo de Wernher von Braun, a quien había conocido en su huida de Berlín, Walter Robert Dornberger, Zuse y von Braun abandonaron Alemania, y Zuse se radicó en la pequeña población Alpina de Suiza, Hinterstein. Allí continúo trabajando en su proyecto, desarrollado su computadora.
En 1947, la Z-4 tenía una capacidad de 16 palabras en la memoria, en 1949 la capacidad había aumentado hasta 64 palabras y en la década de los 50, la memoria de la Z-4 podía contener 1024 palabras de 32 bits. Además podía multiplicar en un segundo y extraer raiz cuadrada en 5 segundos.
Además de sus trabajos en la computadora, Konrad Zuse desarrolló un idioma prototipo al cual llamó Plankalkul, en el cual anticipó y resolvió varios de los problemas que se abarcan hoy en el contexto de la teoría de los algoritmos, programación estructurada y estructura de la programación de idiomas para computadoras.
Poco después de terminada la guerra, ya establecido en suelo suizo, Konrad Zuse estableció su propia compañía a la que denomino Zuse KG. Después de varios años construyendo su serie Z y de no haber logrado interesar lo suficiente a IBM para respaldar su producción, Remington Rand decidió ayudar a comercializar en Suiza algunos de los modelos fabricados por Zuse. Finalmente, la firma Siemens AG adquirió los derechos sobre la compañía de Zuse y éste quedó como consultor semi-retirado de la misma. Hoy se reconoce a Konrad Zuse como el creador de la primera computadora digital programable completamente operacional.
Atanasoff Y Berry Una antigua patente de un dispositivo que mucha gente creyó que era la primera computadora digital electrónica, se invalidó en 1973 por orden de un tribunal federal, y oficialmente se le dio el crédito a John V. Atanasoff como el inventor de la computadora digital electrónica. El Dr. Atanasoff, catedrático de la Universidad Estatal de Iowa, desarrolló la primera computadora digital electrónica entre los años de 1937 a 1942. Llamó a su invento la computadora Atanasoff-Berry, ó solo ABC (Atanasoff Berry Computer). Un estudiante graduado, Clifford Berry, fue una útil ayuda en la construcción de la computadora ABC.
En el edificio de Física de la Universidad de Iowa aparece una placa con la siguiente leyenda: "La primera computadora digital electrónica de operación automática del mundo, fue construida en este edificio en 1939 por John Vincent Atanasoff, matemático y físico de la Facultad de la Universidad, quien concibió la idea, y por Clifford Edward Berry, estudiante graduado de física."
MARK I (1944) Marca la fecha del la primera computadora, que se pone en funcionamiento. Es el Dr. Howard Aiken en la Universidad de Harvard, Estados Unidos, quien la presenta con el nombre de Mark I. Es esta la primera máquina procesadora de información. La Mark I funcionaba eléctricamente, las instrucciones e información se introducen en ella por medio de tarjetas perforadas. Los componentes trabajan basados en principios electromecánicos. Este impresionante equipo medía 16 mts. de largo y 2,5 mts. de alto, contenía un aproximado de 800.000 piezas y más de 800 Km. de cablerío eléctrico, pero los resultados obtenidos eran igualmente impresionantes para la época. Mark I tenía la capacidad de manejar números de hasta 23 dígitos, realizando sumas en menos de medio segundo, multiplicaciones en tres segundos y operaciones logarítmicas en poco más de un minuto. Ahora sí se había hecho por fin realidad el sueño de Pascal, Leibnitz, Babbage, Hollerith y muchos otros: la computadora era una realidad.
A pesar de su peso superior a 5 toneladas y su lentitud comparada con los equipos actuales, fue la primera máquina en poseer todas las características de una verdadera computadora.
ENIAC (1946) La primera computadora electrónica fue terminada de construir en 1946, por J.P.Eckert y J.W.Mauchly en la Universidad de Pensilvania, U.S.A. y se le llamó ENIAC (Electronic Numerical Integrator And Computer), ó Integrador numérico y calculador electrónico. La ENIAC construida para aplicaciones de la Segunda Guerra mundial, se terminó en 30 meses por un equipo de científicos que trabajaban bajo reloj. La ENIAC, mil veces más veloz que sus predecesoras electromecánicas, irrumpió como un importante descubrimiento en la tecnología de la computación. Pesaba 30 toneladas y ocupaba un espacio de 450 mts cuadrados, llenaba un cuarto de 6 mts x 12 mts y contenía 18.000 bulbos, tenía que programarse manualmente conectándola a 3 tableros que contenían más de 6000 interruptores. Ingresar un nuevo programa era un proceso muy tedioso que requería días o incluso semanas. A diferencia de las computadoras actuales que operan con un sistema binario (0,1) la ENIAC operaba con uno decimal (0, 1,2...9) La ENIAC requería una gran cantidad de electricidad. La ENIAC poseía una capacidad, rapidez y flexibilidad muy superiores a la Mark I. Comenzaba entonces la tenaz competencia en la naciente industria, IBM desarrolló en 1948 su computadora SSEC (Calculadora Electrónica de Secuencia Selectiva) superior a la ENIAC.
Para 1951, la compañía Remington Rand, otra de las líderes en este campo, presento al mercado su modelo denominado Univac, que ganó el contrato para el censo de 1951 por su gran capacidad, netamente superior a todas las demás desarrolladas hasta el momento.
Pero para la recia personalidad de Thomas J. Watson, se le hacia difícil aceptar que su compañía no fuera la principal en este campo, así que en respuesta al desarrollo de la Univac, hizo que IBM construyera su modelo 701, una computadora científica con una capacidad superior 25 veces a la SSEC y muy superior también a la Univac.
A la 701 siguieron otros modelos cada vez más perfeccionados en cuanto a rapidez, precisión y capacidad, los cuales colocaron a IBM como el líder indiscutible de la naciente industria de las computadoras. Aunque en la actualidad es difícil mencionar a una firma determinada como la primera en este campo, es un hecho irrefutable que IBM continua siendo una de las principales compañías en cuanto a desarrollo de computadoras se refiere.
• Con ella se inicia una nueva era, en la cual la computadora pasa a ser el centro del desarrollo tecnológico, y de una profunda modificación en el comportamiento de las sociedades.
EDVAC (1947) (Eletronic Discrete-Variable Automatic Computer, es decir computadora automática electrónica de variable discreta) Desarrollada por Dr. John W. Mauchly, John Presper Eckert Jr. y John Von Neumann. Primera computadora en utilizar el concepto de almacenar información. Podía almacenar datos e instrucciones usando un código especial llamado notación binaria. Los programas almacenados dieron a las computadoras una flexibilidad y confiabilidad tremendas, haciéndolas más rápidas y menos sujetas a errores que los programas mecánicos. Una computadora con capacidad de programa almacenado podría ser utilizada para varias aplicaciones cargando y ejecutando el programa apropiado. Hasta este punto, los programas y datos podían ser ingresados en la computadora sólo con la notación binaria, que es el único código que las computadoras "entienden". El siguiente desarrollo importante en el diseño de las computadoras fueron los programas intérpretes, que permitían a las personas comunicarse con las computadoras utilizando medios distintos a los números binarios. En 1952 Grace Murray Hoper una oficial de la Marina de EE.UU., desarrolló el primer compilador, un programa que puede traducir enunciados parecidos al inglés en un código binario comprensible para la maquina llamado COBOL (COmmon Business-Oriented Languaje).
EDSAC (1949) Desarrollada por Maurice Wilkes. Primera computadora capaz de almacenar programas electrónicamente.
LA ACE PILOT (1950) Turing tuvo listos en 1946 todos los planos de lo que posteriormente seria conocido como ACE Pilot (Automatic Calculating Engine) que fue presentado públicamente en 1950. La ACE Pilot estuvo considerada por mucho tiempo como la computadora más avanzada del mundo, pudiendo realizar
operaciones tales como suma y multiplicación en cuestión de microsegundos.
UNIVAC I (1951) Desarrollada por Mauchly y Eckert para la Remington-Rand Corporation. Primera computadora comercial utilizada en las oficinas del censo de los Estados Unidos. Esta máquina se encuentra actualmente en el "Smithsonian Institute". En 1952 fue utilizada para predecir la victoria de Dwight D. Eisenhower en las elecciones presidenciales de los Estados Unidos.
El Software
El Software
Durante las tres primeras décadas de la Informática, el principal desafío era el desarrollo del hardware de las computadoras, de forma que se redujera el costo de procesamiento y almacenamiento de datos.
La necesidad de enfoques sistemáticos para el desarrollo y mantenimiento de productos de software se patentó en la década de 1960. En ésta década aparecieron las computadoras de la tercera generación y se desarrollaron técnicas de programación como la multiprogramación y de tiempo compartido. Y mientras las computadoras estaban haciéndose más complejas, resultó obvio que la demanda por los productos de software creció en mayor cantidad que la capacidad de producir y mantener dicho software. Estas nuevas capacidades aportaron la tecnología necesaria para el establecimiento de sistemas computacionales interactivos, de multiusuario, en línea y en tiempo real; surgiendo nuevas aplicaciones para la computación, como las reservaciones aéreas, bancos de información médica, etc.
Fue hasta el año 1968 que se convocó una reunión en Garmisch, Alemania Oriental estimulándose el interés hacia los aspectos técnicos y administrativos utilizados en el desarrollo y mantenimiento del software, y fue entonces donde se utilizó el término "Ingeniería del Software".
A lo largo de la década de los ochenta, los avances en microelectrónica han dado como resultado una mayor potencia de cálculo a la vez que una reducción de costo. Hoy el problema es diferente. El principal desafío es mejorar la calidad y reducir el costo.Las personas encargadas de la elaboración del software se han enfrentado a problemas muy comunes: unos debido a la exigencia cada vez mayor en la capacidad de resultados del software, debido al permanente cambio de condiciones lo que aumenta su complejidad y obsolescencia; y otros, debido a la carencia de herramientas adecuadas y estándares de tipo organizacional encaminados al mejoramiento de los procesos en el desarrollo del software.
Una necesidad sentida en nuestro medio es el hecho de que los productos de software deben ser desarrollados con base en la implementación de estándares mundiales, modelos , sistemas métricos, capacitación del recurso humano y otros principios y técnicas de la ingeniería de software que garanticen la producción de software de calidad y competitividad a nivel local e internacional.
Con el acelerado avance tecnológico de la información, la cantidad y la complejidad de los productos de software se están incrementando considerablemente, así como también la exigencia en su funcionalidad y confiabilidad; es por esto que la calidad y la productividad se están constituyendo en las grandes preocupaciones tanto de gestores como para desarrolladores de software.
En los primeros años del software, las actividades de elaboración de programas eran realizadas por una sola persona utilizando lenguajes de bajo nivel y ajustándose a un computador en especial, que generaban programas difíciles de entender, aun hasta para su creador, después de algún tiempo de haberlo producido. Esto implicaba tener que repetir el mismo proceso para desarrollar el mismo programa para otras máquinas.
Por consiguiente, la confiabilidad, facilidad de mantenimiento y cumplimiento no se garantizaban y la productividad era muy baja.
Posteriormente, con la aparición de técnicas estructuradas y con base en las experiencias de los programadores se mejoró la productividad del software. Sin embargo, este software seguía teniendo fallas, como por ejemplo: inadecuada, dificultad para su correcto funcionamiento, y por su puesto, insatisfacción del cliente.
Conforme se incrementaba la tecnología de los computadores, también crecía la demanda de los productos de software, pero mucho más lentamente, tanto que hacia 1990 se decía que las posibilidades del software estaban retrasadas respecto a las del hardware en un mínimo de dos generaciones de procesadores y que la distancia continuaba aumentando.
En la actualidad muchos de estos problemas subsisten en el desarrollo de software, con una dificultad adicional relacionada con la incapacidad para satisfacer totalmente la gran demanda y exigencias por parte de los clientes.
El elemento básico del software es el programa. Un programa es un grupo de instrucciones destinadas a cumplir una tarea en particular. Un programa puede estar conformado por varios programas más sencillos.
El software se puede clasificar en tres grupos: sistemas operativos, lenguajes de programación y aplicaciones.
Durante las tres primeras décadas de la Informática, el principal desafío era el desarrollo del hardware de las computadoras, de forma que se redujera el costo de procesamiento y almacenamiento de datos.
La necesidad de enfoques sistemáticos para el desarrollo y mantenimiento de productos de software se patentó en la década de 1960. En ésta década aparecieron las computadoras de la tercera generación y se desarrollaron técnicas de programación como la multiprogramación y de tiempo compartido. Y mientras las computadoras estaban haciéndose más complejas, resultó obvio que la demanda por los productos de software creció en mayor cantidad que la capacidad de producir y mantener dicho software. Estas nuevas capacidades aportaron la tecnología necesaria para el establecimiento de sistemas computacionales interactivos, de multiusuario, en línea y en tiempo real; surgiendo nuevas aplicaciones para la computación, como las reservaciones aéreas, bancos de información médica, etc.
Fue hasta el año 1968 que se convocó una reunión en Garmisch, Alemania Oriental estimulándose el interés hacia los aspectos técnicos y administrativos utilizados en el desarrollo y mantenimiento del software, y fue entonces donde se utilizó el término "Ingeniería del Software".
A lo largo de la década de los ochenta, los avances en microelectrónica han dado como resultado una mayor potencia de cálculo a la vez que una reducción de costo. Hoy el problema es diferente. El principal desafío es mejorar la calidad y reducir el costo.Las personas encargadas de la elaboración del software se han enfrentado a problemas muy comunes: unos debido a la exigencia cada vez mayor en la capacidad de resultados del software, debido al permanente cambio de condiciones lo que aumenta su complejidad y obsolescencia; y otros, debido a la carencia de herramientas adecuadas y estándares de tipo organizacional encaminados al mejoramiento de los procesos en el desarrollo del software.
Una necesidad sentida en nuestro medio es el hecho de que los productos de software deben ser desarrollados con base en la implementación de estándares mundiales, modelos , sistemas métricos, capacitación del recurso humano y otros principios y técnicas de la ingeniería de software que garanticen la producción de software de calidad y competitividad a nivel local e internacional.
Con el acelerado avance tecnológico de la información, la cantidad y la complejidad de los productos de software se están incrementando considerablemente, así como también la exigencia en su funcionalidad y confiabilidad; es por esto que la calidad y la productividad se están constituyendo en las grandes preocupaciones tanto de gestores como para desarrolladores de software.
En los primeros años del software, las actividades de elaboración de programas eran realizadas por una sola persona utilizando lenguajes de bajo nivel y ajustándose a un computador en especial, que generaban programas difíciles de entender, aun hasta para su creador, después de algún tiempo de haberlo producido. Esto implicaba tener que repetir el mismo proceso para desarrollar el mismo programa para otras máquinas.
Por consiguiente, la confiabilidad, facilidad de mantenimiento y cumplimiento no se garantizaban y la productividad era muy baja.
Posteriormente, con la aparición de técnicas estructuradas y con base en las experiencias de los programadores se mejoró la productividad del software. Sin embargo, este software seguía teniendo fallas, como por ejemplo: inadecuada, dificultad para su correcto funcionamiento, y por su puesto, insatisfacción del cliente.
Conforme se incrementaba la tecnología de los computadores, también crecía la demanda de los productos de software, pero mucho más lentamente, tanto que hacia 1990 se decía que las posibilidades del software estaban retrasadas respecto a las del hardware en un mínimo de dos generaciones de procesadores y que la distancia continuaba aumentando.
En la actualidad muchos de estos problemas subsisten en el desarrollo de software, con una dificultad adicional relacionada con la incapacidad para satisfacer totalmente la gran demanda y exigencias por parte de los clientes.
El elemento básico del software es el programa. Un programa es un grupo de instrucciones destinadas a cumplir una tarea en particular. Un programa puede estar conformado por varios programas más sencillos.
El software se puede clasificar en tres grupos: sistemas operativos, lenguajes de programación y aplicaciones.
miércoles, 21 de mayo de 2008
Sistema Operativo ☺◘~
Sistema Operativo
El sistema operativo es un conjunto de programas que coordinan el equipo físico de la computadora y supervisan la entrada, la salida, el almacenamiento y las funciones de procesamiento. Incluye comandos internos y externos. Los comandos internos se encuentran en la memoria de la computadora y los comandos externos, generalmente, están en la unidad de disco. Para usar los comandos externos, se necesitan sus archivos.
El sistema operativo es una colección de programas diseñados para facilitarle al usuario la creación y manipulación de archivos, la ejecución de programas y la operación de otros periféricos conectados a la computadora. Ejemplo de algunos comandos son: abrir un archivo, hacer una copia impresa de lo que hay en la pantalla y copiar un archivo de un disco a otro.
En las décadas de los 70 y 80 la mayor parte de las computadoras utilizaban su propio sistema operativo, o sea, que aquellas aplicaciones creadas para un sistema operativo no se podían usar en otro. Debido a este problema, los vendedores de sistemas operativos decidieron concentrarse en aquellos sistemas más utilizados. Ellos visualizaron que las dos compañías más grandes de microcomputadoras se unirían para crear mayor compatibilidad y esto es un hecho.
Toda computadora tiene algún tipo de sistema operativo, el cual debe ser activado cuando la computadora se enciende. Si el sistema operativo está grabado en la ROM o presente en el disco duro de la computadora, el sistema operativo, generalmente, se activa automáticamente cuando la computadora se enciende. Si no, se inserta un disco que contenga el sistema operativo para activarlo.
Un sistema operativo provee un programa o rutina para preparar los discos ("formatting a disk"), copiar archivos o presentar un listado del directorio del disco.
El sistema operativo del disco de una computadora personal de IBM (IBM-PC) es una colección de programas diseñados para crear y manejar archivos, correr programas y utilizar los dispositivos unidos al sistema de la computadora. Microsoft (compañía de programas) desarrolló PC-DOS para IBM y MS-DOS para IBM compatibles. Los dos sistemas operativos son idénticos. DOS dicta cómo los programas son ejecutados en IBM y compatibles.
El DOS ("Disk Operating System") es el sistema operativo del disco. Es el conjunto de instrucciones del programa que mantiene un registro de las tareas requeridas para la operación de la computadora, o sea, es una colección de programas diseñados para crear y manejar archivos, correr programas y utilizar los dispositivos unidos al sistema de la computadora.
Entre las tareas que realiza un SO tenemos:
• Si es un sistema multitarea: asignar y controlar los recursos del sistema, definir qué aplicación y en qué orden deben ser ejecutadas.
• Manejar la memoria del sistema que comparten las múltiples aplicaciones.
• Manejar los sistemas de entrada y salida, incluidos discos duros, impresoras y todo tipo de puertos.
• Envío de mensajes de estado a las aplicaciones, al administrador de sistema o al propio usuario, sobre cualquier error o información necesaria para el trabajo estable y uniforme del sistema.
• Asume tareas delegadas de las propias aplicaciones, como impresión en background y procesamiento por lotes, con el fin de que éstas ganen en eficiencia y tiempo.
• Administra, de existir, el procesamiento en paralelo.
• Tipos de sistemas operativos
• El "Character based": DOS dice si está listo para recibir un comando presentando un símbolo ("prompt") en la pantalla: C:\>. El usuario responde escribiendo una instrucción para ser ejecutada, caracter por caracter mediante el uso del teclado.
• El "Graphic User Interface": Hace uso de un "mouse" como un dispositivo de puntero y permite que se apunte a iconos (pequeños símbolos o figuras que representan alguna tarea a realizarse) y oprimir el botón del "mouse" para ejecutar la operación o tarea seleccionada. El usuario puede controlar el sistema operativo seleccionando o manipulando iconos en el monitor.
Ejemplos de sistemas operativos
PC-DOS (Personal Computer DOS)
MS-DOS (Microsoft DOS)
OS/2 (IBM Operating System 2)
DR DOS 5.0 (Digital Research DOS)
UNIX
Linux
Windows para sistemas operativos DOS
Windows NT
El sistema operativo es un conjunto de programas que coordinan el equipo físico de la computadora y supervisan la entrada, la salida, el almacenamiento y las funciones de procesamiento. Incluye comandos internos y externos. Los comandos internos se encuentran en la memoria de la computadora y los comandos externos, generalmente, están en la unidad de disco. Para usar los comandos externos, se necesitan sus archivos.
El sistema operativo es una colección de programas diseñados para facilitarle al usuario la creación y manipulación de archivos, la ejecución de programas y la operación de otros periféricos conectados a la computadora. Ejemplo de algunos comandos son: abrir un archivo, hacer una copia impresa de lo que hay en la pantalla y copiar un archivo de un disco a otro.
En las décadas de los 70 y 80 la mayor parte de las computadoras utilizaban su propio sistema operativo, o sea, que aquellas aplicaciones creadas para un sistema operativo no se podían usar en otro. Debido a este problema, los vendedores de sistemas operativos decidieron concentrarse en aquellos sistemas más utilizados. Ellos visualizaron que las dos compañías más grandes de microcomputadoras se unirían para crear mayor compatibilidad y esto es un hecho.
Toda computadora tiene algún tipo de sistema operativo, el cual debe ser activado cuando la computadora se enciende. Si el sistema operativo está grabado en la ROM o presente en el disco duro de la computadora, el sistema operativo, generalmente, se activa automáticamente cuando la computadora se enciende. Si no, se inserta un disco que contenga el sistema operativo para activarlo.
Un sistema operativo provee un programa o rutina para preparar los discos ("formatting a disk"), copiar archivos o presentar un listado del directorio del disco.
El sistema operativo del disco de una computadora personal de IBM (IBM-PC) es una colección de programas diseñados para crear y manejar archivos, correr programas y utilizar los dispositivos unidos al sistema de la computadora. Microsoft (compañía de programas) desarrolló PC-DOS para IBM y MS-DOS para IBM compatibles. Los dos sistemas operativos son idénticos. DOS dicta cómo los programas son ejecutados en IBM y compatibles.
El DOS ("Disk Operating System") es el sistema operativo del disco. Es el conjunto de instrucciones del programa que mantiene un registro de las tareas requeridas para la operación de la computadora, o sea, es una colección de programas diseñados para crear y manejar archivos, correr programas y utilizar los dispositivos unidos al sistema de la computadora.
Entre las tareas que realiza un SO tenemos:
• Si es un sistema multitarea: asignar y controlar los recursos del sistema, definir qué aplicación y en qué orden deben ser ejecutadas.
• Manejar la memoria del sistema que comparten las múltiples aplicaciones.
• Manejar los sistemas de entrada y salida, incluidos discos duros, impresoras y todo tipo de puertos.
• Envío de mensajes de estado a las aplicaciones, al administrador de sistema o al propio usuario, sobre cualquier error o información necesaria para el trabajo estable y uniforme del sistema.
• Asume tareas delegadas de las propias aplicaciones, como impresión en background y procesamiento por lotes, con el fin de que éstas ganen en eficiencia y tiempo.
• Administra, de existir, el procesamiento en paralelo.
• Tipos de sistemas operativos
• El "Character based": DOS dice si está listo para recibir un comando presentando un símbolo ("prompt") en la pantalla: C:\>. El usuario responde escribiendo una instrucción para ser ejecutada, caracter por caracter mediante el uso del teclado.
• El "Graphic User Interface": Hace uso de un "mouse" como un dispositivo de puntero y permite que se apunte a iconos (pequeños símbolos o figuras que representan alguna tarea a realizarse) y oprimir el botón del "mouse" para ejecutar la operación o tarea seleccionada. El usuario puede controlar el sistema operativo seleccionando o manipulando iconos en el monitor.
Ejemplos de sistemas operativos
PC-DOS (Personal Computer DOS)
MS-DOS (Microsoft DOS)
OS/2 (IBM Operating System 2)
DR DOS 5.0 (Digital Research DOS)
UNIX
Linux
Windows para sistemas operativos DOS
Windows NT
Multiprogramación↓♫►
Multiprogramación
• Sistemas multiprogramados : varios trabajos se conservan en memoria al mismo tiempo, y el cpu se comparte entre ellos
• Rutinas de E/S: provista por el sistema ejecutadas simultáneamente con procesamiento del CPU.
• Administración de memoria: el sistema debe reservar memoria para varios trabajos.
• Administración del CPU: el sistema debe elegir entre varios trabajos listos para ejecución.
• Administración de dispositivos.
Tercera Generación (Mitad de la década de 1960 a mitad de la década de 1970)
Se inicia en 1964, con la introducción de la familia de computadores Sistema/360 de IBM. Los computadores de esta generación fueron diseñados como sistemas para usos generales. Casi siempre eran sistemas grandes, voluminosos. Eran sistemas de modos múltiples, algunos de ellos soportaban simultáneamente procesos por lotes, tiempo compartido, procesamiento de tiempo real y multiprocesamiento. Eran grandes y costosos, nunca antes se había construido algo similar, y muchos de los esfuerzos de desarrollo terminaron muy por arriba del presupuesto y mucho después de lo que el planificador marcaba como fecha de terminación.
Estos sistemas introdujeron mayor complejidad a los ambientes computacionales; una complejidad a la cual, en un principio, no estaban acostumbrados los usuarios.
Sistemas de Tiempo Compartido
• El CPU se comparte entre varios trabajos que se encuentran residentes en memoria y en el disco (el CPU se asigna a un trabajo solo si éste esta en memoria).
• Un trabajo es enviado dentro y fuera del la memoria hacia el disco.
• Existe comunicación en-línea entre el usuario y el sistema; cuando el sistema operativo finaliza la ejecución de un comando, busca el siguiente "estatuto de control" no de una tarjeta perforada, sino del teclado del operador.
• Existe un sistema de archivos en línea el cual está disponible para los datos y código de los usuarios
Cuarta Generación (Mitad de la década de 1970 a nuestros días)
Los sistemas de la cuarta generación constituyen el estado actual de la tecnología. Muchos diseñadores y usuarios se sienten aun incómodos, después de sus experiencias con los sistemas operativos de la tercera generación, y se muestran cautelosos antes de comprometerse con sistemas operativos complejos. Con la ampliación del uso de redes de computadores y del procesamiento en línea los usuarios obtienen acceso a computadores alejados geográficamente a través de varios tipos de terminales. El microprocesador ha hecho posible la aparición de la computadora personal, uno de los desarrollos de notables consecuencias sociales más importantes de las últimas décadas. Ahora muchos usuarios han desarrollado sistemas de computación que son accesibles para su uso personal en cualquier momento del día o de la noche. La potencia del computador, que costaba varios cientos de miles de dólares al principio de la década de 1960, hoy es mucho más accesible. El porcentaje de la población que tiene acceso a un computador en el Siglo XXI es mucho mayor. El usuario puede tener su propia computadora para realizar parte de su trabajo, y utilizar facilidades de comunicación para transmitir datos entre sistemas. La aplicación de paquetes de software tales como procesadores de palabras, paquetes de bases de datos y paquetes de gráficos ayudaron a la evolución de la computadora personal. La llave era transferir información entre computadoras en redes de trabajo. El correo electrónico, transferencia de archivos, y aplicaciones de acceso a bases de datos proliferaron. El modelo cliente-servidor fue esparcido. El campo de ingeniería del software continuó evolucionando con una mayor confianza proveniente de los EE.UU. Los ambientes del usuario, altamente simbólicos, y orientados hacia las siglas de las décadas de los sesenta y setenta, fueron reemplazados, en la década de los ochenta, por los sistemas controlados por menú, los cuales guían al usuario a lo largo de varias opciones expresadas en un lenguaje sencillo.
• Sistemas multiprogramados : varios trabajos se conservan en memoria al mismo tiempo, y el cpu se comparte entre ellos
• Rutinas de E/S: provista por el sistema ejecutadas simultáneamente con procesamiento del CPU.
• Administración de memoria: el sistema debe reservar memoria para varios trabajos.
• Administración del CPU: el sistema debe elegir entre varios trabajos listos para ejecución.
• Administración de dispositivos.
Tercera Generación (Mitad de la década de 1960 a mitad de la década de 1970)
Se inicia en 1964, con la introducción de la familia de computadores Sistema/360 de IBM. Los computadores de esta generación fueron diseñados como sistemas para usos generales. Casi siempre eran sistemas grandes, voluminosos. Eran sistemas de modos múltiples, algunos de ellos soportaban simultáneamente procesos por lotes, tiempo compartido, procesamiento de tiempo real y multiprocesamiento. Eran grandes y costosos, nunca antes se había construido algo similar, y muchos de los esfuerzos de desarrollo terminaron muy por arriba del presupuesto y mucho después de lo que el planificador marcaba como fecha de terminación.
Estos sistemas introdujeron mayor complejidad a los ambientes computacionales; una complejidad a la cual, en un principio, no estaban acostumbrados los usuarios.
Sistemas de Tiempo Compartido
• El CPU se comparte entre varios trabajos que se encuentran residentes en memoria y en el disco (el CPU se asigna a un trabajo solo si éste esta en memoria).
• Un trabajo es enviado dentro y fuera del la memoria hacia el disco.
• Existe comunicación en-línea entre el usuario y el sistema; cuando el sistema operativo finaliza la ejecución de un comando, busca el siguiente "estatuto de control" no de una tarjeta perforada, sino del teclado del operador.
• Existe un sistema de archivos en línea el cual está disponible para los datos y código de los usuarios
Cuarta Generación (Mitad de la década de 1970 a nuestros días)
Los sistemas de la cuarta generación constituyen el estado actual de la tecnología. Muchos diseñadores y usuarios se sienten aun incómodos, después de sus experiencias con los sistemas operativos de la tercera generación, y se muestran cautelosos antes de comprometerse con sistemas operativos complejos. Con la ampliación del uso de redes de computadores y del procesamiento en línea los usuarios obtienen acceso a computadores alejados geográficamente a través de varios tipos de terminales. El microprocesador ha hecho posible la aparición de la computadora personal, uno de los desarrollos de notables consecuencias sociales más importantes de las últimas décadas. Ahora muchos usuarios han desarrollado sistemas de computación que son accesibles para su uso personal en cualquier momento del día o de la noche. La potencia del computador, que costaba varios cientos de miles de dólares al principio de la década de 1960, hoy es mucho más accesible. El porcentaje de la población que tiene acceso a un computador en el Siglo XXI es mucho mayor. El usuario puede tener su propia computadora para realizar parte de su trabajo, y utilizar facilidades de comunicación para transmitir datos entre sistemas. La aplicación de paquetes de software tales como procesadores de palabras, paquetes de bases de datos y paquetes de gráficos ayudaron a la evolución de la computadora personal. La llave era transferir información entre computadoras en redes de trabajo. El correo electrónico, transferencia de archivos, y aplicaciones de acceso a bases de datos proliferaron. El modelo cliente-servidor fue esparcido. El campo de ingeniería del software continuó evolucionando con una mayor confianza proveniente de los EE.UU. Los ambientes del usuario, altamente simbólicos, y orientados hacia las siglas de las décadas de los sesenta y setenta, fueron reemplazados, en la década de los ochenta, por los sistemas controlados por menú, los cuales guían al usuario a lo largo de varias opciones expresadas en un lenguaje sencillo.
Suscribirse a:
Comentarios (Atom)